
1. Introduction

Mild cognitive impairment (MCI) is considered a transitional

state between normal aging and very early dementia. Although a

small percentage of patients will return to normal cognitive function

from MCI, most of them are likely to degenerate into a high-risk

group of dementia patients.1 The deterioration of cognitive function

will also be affected by the patient’s walking performance.2 In recent

years, many studies have mentioned that gait is an important in-

dicator of overall health and longevity in the elderly community.3,4

Gait is no longer regarded purely as athletic behavior. There is also a

complex relationship between gait and cognition.5 In the case of

normal aging, gait and cognitive ability may decline at the same

time, but it is not known exactly how gait declines with age.3 Hence,

in this study, we used formal neuropsychological testing as a pre-

dicting biomarker for future gait parameter decline, including walk-

ing and jump. Here jump performance is included in the study due to

the fact that the ability to jump is a multi-joint movement requiring

complex motor coordination, involving muscle strength and power,

speed and amplitude of the lower limb movements. The vertical

jump has been shown to be a good predictor of functional capacity

and risk of falling.6 To the best of our knowledge, no research to-date

is published on the interaction among cognitive function, walking

ability and simple vertical jump in the elderly.

With the advancement of medical technology, more and more

studies have utilized gait sensors in gait analysis systems to obtain ac-

curate gait parameters, such as pace, rhythm, variability, asymmetry

and posture control.7,8 Some studies have reviewed the use of gait

sensors in the assessment of neurological diseases, but gait studies

have not yet led to changes in clinical practice. This is perhaps because

most studies mainly compare the differences between pathological

and healthy gait, such as gait distinguished between Parkinson’s dis-

ease (PD) patients and healthy subjects.9 However, it is more impor-

tant to assess the severity or prognosis of neurological diseases.10 In

this study, machine learning was used to predict patients’ future gait

performance via neuropsychological testing, with the purpose of as-

sisting medical experts to understand that patients’ gait performance

may deteriorate in the future, as well as to provide appropriate diag-

nosis and treatment. The diagnosis of different types of MCI, including

MCI due to Alzheimer’s disease (AD), PD and cerebrovascular disease,

were based on previously published consensus criteria.11–15

2. Patients and methods

2.1. Proposed approach

A constructed block diagram of a machine learning system, built
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for the classification of future gait functions of MCI patients, is

shown in Figure 1. The gait and neuropsychological tests of MCI

patients began in April 2018, and gait tests were performed again,

six months later. All patients provided informed consent, and the

study was granted ethical approval by the MacKay Memorial Hos-

pital Institutional Review Board. Participants tested were MCI pa-

tients, with MCI diagnosed according to Petersen’s MCI diagnostic

criteria.16 The criteria for MCI are: 1) cognitive complaint; 2) cogni-

tive decline not normal for age; 3) no dementia, and 4) essentially

normal functional activities.

Using a BTS G-WALK wearable device17,18 for gait evaluation,

three tests were conducted in this study: a simple test of walking in a

5.5 m long straight line, atimed up and go (TUG) test, and a vertical

jump test. It is noteworthy that some participants may have knee in-

juries and cannot jump, whereas others have missing data attributed

to misuse of the measuring instrument. Hence, the missing data

points were predicted by applying support-vector regression (SVR).

Next, the data were normalized, and principal component analysis

(PCA) was utilized to reduce and extract features, as well as to reduce

noise. Finally, a support-vector machine (SVM) model was created to

predict if future gait would decline.

According to relevant studies, walking speed during comfortable

gait will remain stable until the age of 60. After 60 years of age, the

comfortable walking speed will drop by about 15% every 10 years. The

speed of fast gait will peak at the age of 20, and then drop by about

20% every 10 years.19,20 Therefore, walking speed, TUG test time, and

height of the in-situ jump test were used as targets for each respective

test in this study. To compare changes in gait parameters, the data of

the first test was subtracted from the data of the second test, and the

result was divided by the data of the first test. Based on the aforemen-

tioned relevant studies,19,20 it was decided that patients participating

in the study, who would exhibit a 5% degraded gait performance over

six months, were to be classified as the decline group, while the re-

maining patients would be the unchanged group.

2.2. Participants

This was a prospective study, and consecutive series of patients

with MCI were enrolled from April 2018 to July 2018. Patients were

studied at the neurological department of the MacKay Memorial

Hospital (Taiwan). Diagnoses were assigned during routine assess-

ments in the study by reviewing clinical, neuropsychological, brain

imaging data, and biochemical tests. The study involved a face-

to-face interview with a trained research assistant. The time limit for

each interview was 90 minutes, to avoid fatigue. The participants’

condition was as follows:

1. Age exceeds 30 years.

2. Clinically accurate compliance with MCI diagnostic criteria.

3. Without dementia (for those who have received more than six

years of education, the mini-mental state examination (MMSE)

must be higher than 23 points; for those who have less than six

years of education, the MMSE must be higher than 13 points).

4. Aconsent form should be signed.

Exclusion conditions:

1. Participants meet the diagnostic criteria for dementia (CDR � 1.0).

2. Recent major medical illness or surgery that may affect gait per-

formance.

3. Recently used (within three months) drugs that may affect cogni-

tive function.

4. Acute medical illness or surgery that may be severe enough to

affect cognitive function.

5. Unable to walk more than 12 m without assistance.

All the exclusion criteria were judged by the clinical physician.

Figure 2 shows the flow chart for the screening and grouping process

of the participants in this study.

2.3. Wearable sensors and portable system

In this study, the BTS G-WALK gait analysis system was utilized to

record the gait parameters. The sensor measures 70 mm � 40 mm �

18 mm and weighs approximately 37 g. It can be attached behind the

waist, as shown in Figure 3. BTS G-WALK is a wireless inertial sensor

with a triaxial accelerometer (dynamic range �2, �4, �8, �16 g and

bandwidth from 4 to 1000 Hz); and a 16 bit triaxial gyroscope (dy-

namic range �250, �500, �1000, �2000 �/sec and bandwidth from 4

to 8000 Hz; and a 13 bit triaxial magnetometer (dynamic range

�1200 �T and bandwidth up to 100 Hz). It evaluates the participant’s

walking ability and transmits data to a computer through Bluetooth

wireless transmission.
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Figure 1. Block diagram of the proposed methodology. PCA, principal com-

ponent analysis; SVM, support-vector machine; SVR, support-vector regres-

sion; TUG, timed up and go.

Figure 2. Screening and grouping process of the participants in the study.



2.4. Gait test

1. Walk test: Participants walked 5.5 m to record gait performance,

at their normal walking speed.

2. Timed up and go (TUG): Participants first sat on a chair with a

backrest and no armrests. When they heard the start signal, they

arose and walked for 3 m. Subsequently, they turned around and

walked back to the chair to sit down.

3. Jump test: Participants started in an upright position with their

hands on the outside of their thigh. They squatted slightly and

subsequently attempted to jump up as high as they could.

2.5. Neuropsychological test

The neuropsychological test focuses on attention and working

memory, executive function, memory, visuospatial function, and

language.21 The test areas are shown in Table 1.

2.6. Data analysis

A MATLAB package was used to perform SVR, in order to ad-

dress missing data problem. Subsequently, PCA and SVM were em-

ployed to build a classification model.

2.6.1. SVR with missing data

By mapping the training data to a high-dimensional feature

space, SVR aims to obtain an optimal hyperplane that can predict the

data accurately and minimize the distance of all data to this plane.

Suppose we have a set {xi, yi}, i = 1, …, n, xi � R
n, yi � R, where xi is the

input value, and yi is the corresponding target output value. The

following is a regression hyperplane of SVR:

f (x) = w 	 
(x) + b (1)

where, w is the weight vector, b is an adjustable factor, 
 is the

mapping function, and 
(xi) indicates that xi is mapped to a high-

dimensional space by the function 
.
22

Mapping the indivisible

data to a high-dimensional feature space can facilitate the classifi-

cation of data in the high-dimensional space.

The mapping function is typically linear, but it can be replaced

by a kernel function, k(xi, xj) = (
(xi) 	 
(xj)), to simplify the compli-

cated calculation in a high-dimensional space. In this study, in addi-

tion to a linear function, a radial basis function (RBF) of k(xi, xj) =

exp(–�|xi – xj|
2) and polynomial function of k(xi, xj) = [(xi

T
xj) + 1]d are

also used to solve the missing data problem and fill in the data from

SVR prediction subsequently.23–25

2.6.2. Data normalization

Before applying the SVR prediction model, data min-max nor-

malization was performed to avoid numerical size differences that

may affect the overall performance and cause misjudgment.26–28

Normalization scales the input feature values to be within [0, 1] or

[–1, 1] and does not change the distribution of the original dataset.

Thus, the dataset is consistent in format. In this study, the 36 ne-

uropsychological test scores in Table 2 are used as the input feature

parameters for the SVR prediction model. By applying data normal-

ization these neuropsychological scores are scaled within [0, 1] or

[–1, 1] for better prediction performance. Consequently, the ne-

uropsychological scores of every participant are entered into a data-

set: X � R
n�p, where n is the number of features (= 36 in this study),

and p is the number of participants. After min–max normalization,

the data in X � are within [–1, 1] using the following transformation:

�  � �
�

�
x

x x

x x
1

2( )min

max min

(2)

where, xmin is the minimum and xmax is the maximum value of the

feature x in dataset X. It is also noted that for the subsequent SVM

classification model, these normalized neuropsychological test

scores are still the input feature parameters for classifying each

patient into groups with or without gait decline.

2.6.3. PCA

PCA is applied in this study to reduce the dimension of the

dataset while preserving the most important principal components

(PCs), by transforming the normalized data into a new coordinate

system using orthogonal transformation.29,30,31 The first few PCs can

be selected to reduce the data dimension and provide the SVM with

a lower dimension for predictive classification; hence, the training

model can accelerate the calculation and improve accuracy. More

specifically, a dataset: X � R
n�p can be transformed into a new
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Figure 3. A BTS G-WALK sensor.

Table 1

Neuropsychological tests.

Cognitive Domain Neuropsychological Test

General Cognitive Test MMSE

CDR

Attention and working memory Trail Making Test: Trail A

Digits Forwards/Backwards

Executive function Animal Category Fluency Test

Trail Making Test: Trail B

Memory Taylor Figure: Recall

CVLT-SF

Visuospatial function Taylor Figure: Copy

Judgment of line orientation

Language Boston Naming Test

Story Telling

CDR, clinical dementia rating; CVLT-SF, California verbal language test-II

short form; MMSE, mini-mental state examination.



coordinate system: X � = V(X – X) � R
k�p, where k � n is the number

of principal components chosen. Note that X is the mean dataset of

X and the transformation matrix V � R
k�n stores the first k eigen-

vectors (corresponding to the first k largest eigenvalues) of the

covariance matrix of (X – X) in its row vectors.

2.6.4. SVM

The SVM theory is the same as that of SVR, in which the training

data are mapped to a high-dimensional feature space. The dif-

ference is that we wish to obtain an optimal hyperplane that can

distinguish the data into two different sets.30 As the margin of the

two sets on this plane becomes larger, the classification perfor-

mance improves. Herein, we will compare the results using different

kernel functions.

2.6.5. ROC AUC

AUC is the area under the ROC (Receiver Operating Charac-

teristics) curve.32 ROC curve is a plot of true positive rate (TPR) ver-

sus false positive rate (FPR), defined as follows:

TPR
TP

TP FN


�
(3)

FPR
FP

FP TN


�
(4)

at different classification thresholds, as shown in Figure 4. AUC

measures the quality of a model’s predictions irrespective of what

classification threshold is. The closer of the AUC value to 1, the

better the quality and confidence of the model’s prediction.

3. Results

After the first neuropsychological test and theset of three gait

tests, neuropsychological test scores and gait characteristics of 81

patients who participated in the study were obtained. The results of

the psychological test scores are shown in Table 2, where the values

are mean averages with � standard deviation.

Participants (n = 81) were aged between 34 and 89 years (me-

dian 70, interquartile range 63 to 78.5); 55.6% were male (n = 45).

After six months, a further 37 participants could not complete the

the second gait test, including loss of follow up (n = 15), died (n = 2),

and refusal of assessment for any reason (n = 20). Consequently, a

total of 44 patients underwent a second set of three gait tests.

Data for the speed of the walk test and jump height test from

some of the participants are missing; therefore, other gait features

are utilized to predict the missing data via SVR. After the missing

data are predicted, the training of the classification prediction model

can begin. In some participants who are unable to jump due to poor

mobility in their knees, the height of their jump was noted as zero.

In the first gait test, among the 44 patients, one participant’s

walking speed and another participant’s height in the jump test were

missing. The results of using SVR to predict the missing data of the

two patients in the study, utilizing data from the other patients, are

shown in Table 3. Each RMSE (root-mean-square error), MAE (mean

absolute error), and their corresponding kernel functions are dis-

played sequentially.

Next, SVR must be utilized again to account for missing values in

the second gait test, where the speeds from seven participants’

walking tests were lost. The data from the other patients are used

and the results of using SVR to predict missing data for the seven

participants are shown in Table 3.

3.1. Walking speed test

The speed from the first walk test was compared with that from

the second test. The 44 participants were divided into two groups

based on the participants’ walking speed. There were 8 participants

whose walking speed was less in the second test, and 36 participants

whose walking speed was maintained.

Next, the scores were obtained from the neuropsychological
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Table 2

Neuropsychological test scores.

Test Score Test Score

MMSE-total 25.64 � 3.440 Trail A Making Test-Time(s) 23.3 � 15.0

MMSE-orientation 9.34 � 1.41 Trail A Making Test-Number 6.75 � 1.10

MMSE-memory 4.05 � 1.12 Trail B Making Test-Time(s) 63.33 � 38.45

MMSE-calculation 4.05 � 1.14 Trail B Making Test-Number 12.11 � 3.010

MMSE-language 4.55 � 0.70 Taylor Figure-Copy Time(s) 242.93 � 138.76

MMSE-emotion actions 3.66 � 0.57 Taylor Figure-Copy 30.26 � 7.050

CDR 0.5 Taylor Figure-Recall Time(s) 151.39 � 135.81

CDR-SB 1.78 � 1.10 Taylor Figure-Recall 13.41 � 9.010

CVLT-SF-1 3.41 � 1.34 Animal Category Fluency Test 12.66 � 3.870

CVLT-SF-2 4.57 � 1.48 Boston Naming 21.93 � 5.540

CVLT-SF-3 5.32 � 1.86 Test(Self-report)-People 2.36 � 0.99

CVLT-SF-4 6.11 � 1.51 Test(Self-report)-Place 00.7 � 0.85

CVLT-SF-delay 5.75 � 2.02 Test(Self-report)-Object 00.6 � 3.94

CVLT-SF-recall delay 4.75 � 2.29 Test(Self-report)-Thing 4.05 � 1.45

CVLT-SF-recall prompt 3.95 � 2.79 Test(Prompt)-People 2.93 � 0.33

Judgment of line orientation 13.41 � 3.350 Test(Prompt)-Place 1.36 � 0.57

Digits forwards 07.5 � 1.37 Test(Prompt)-Object 7.77 � 3.91

Digits backwards 4.05 � 1.45 Boston Naming Test(Prompt)-Thing 4.55 � 1.84

CDR, clinical dementia rating; CVLT-SF, California verbal language test-II short form; MMSE, mini-mental state examination.

Figure 4. ROC curve. ROC, receiver operating characteristics.



test; the SVM model was trained, and PCA-SVM classification models

were built. The results are shown in Table 4.

From Table 4, we can see that the highest prediction result

accuracy for the SVM is 84.62%, which is for the polynomial SVM

classification model; however, its ROC AUC is 0.6364, which is not a

desirable value. When the PCA extracts the gait feature, the accuracy

of the polynomial kernel function is as high as 92.31%. Its ROC AUC is

the same, at 0.6364. Here, the linear PCA-SVM classification model

was considered to be better, with an accuracy of 81.82%. The ROC

AUC from the original SVM is 0.6667, and the accuracy after using

the PCA model was unchanged at 81.82%, while the ROC AUC was

significantly improved to 0.9167. In addition, the number of feature

selections is significantly reduced, and better prediction results can

be obtained.

3.2. TUG test

In this case, 15 participants’ time from the TUG test increased,

while the remaining 29 participants’ time did not change signifi-

cantly. The classification results obtained are shown in Table 5.

The polynomial SVM classifier has the highest prediction ac-

curacy of 77.78%, but with a poor ROC AUC of only 0.5556. When

PCA extracts the gait features, the accuracy of the PCA-SVM classifi-

cation model with polynomial kernel function deteriorates. On the

contrary, the accuracy of linear kernel function remains unchanged

in PCA-SVM, but the ROC AUC is increased to 0.8333. Therefore, in

this case, the linear PCA-SVM classification model is the best solu-

tion. In addition, the number of feature selections is significantly

reduced, and better prediction results can be obtained.

3.3. Height of vertical jump test

A total of 14 participants in the group showed reduced values of

height in the vertical jump test. The remaining participants main-

tained their jump height. The classification results are presented in

Table 6.

From the SVM classifier, we can see that the highest prediction

accuracy is 70.00%, which is for the polynomial kernel function,

while the ROC AUC for this is poor, at only 0.619. When the PCA

extracts the gait features, the accuracy of the polynomial kernel

function is unchanged, and the ROC AUC is not improved signifi-

cantly. In the SVM classification model, the accuracy of the RBF ker-

nel function is 69.23%, and its ROC AUC is 0.7778. In the PCA-SVM
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Table 3

Prediction of the missing data.

Speed prediction of the first walk test

Five examples of walk speed (m/s) 1.11 0.67 0.94 1.02 0.81

Predictive results 0.7833

RMSE 0.1364

MAE 0.1077

Kernel function RBF

Height prediction of the first jump test

Five examples of jump height (cm) 16.8 0 1.2 8.3 15

Predictive results 9.3967

RMSE 4.7743

MAE 3.5715

Kernel function Linear

Speed prediction of the second walk test

Five examples of walk speed (m/s) 1.26 1.06 0.86 0.49 1.01

Predictive results 0.9091 1.0076 0.9945 1.0504 1.028 0.933 0.9939

RMSE 0.2312 0.2312 0.2312 0.2312 0.1633 0.1914 0.1914

MAE 0.1593 0.1593 0.1593 0.1593 0.1372 0.1636 0.1636

Kernel function RBF RBF RBF RBF RBF RBF RBF

MAE, mean absolute error; RBF, radial basis function; RMSE, root mean square error.

Table 4

Prediction results of walking speed.

Classifier model Kernel function
Number of

features
Accuracy ROC AUC

Linear 36 81.82% 0.6667

RBF 36 81.82% 0.5556

SVM

Polynomial 36 84.62% 0.6364

Linear 1 81.82% 0.9167

RBF 1 81.82% 0.7222

PCA-SVM

Polynomial 7 92.31% 0.6364

AUC, area under the ROC curve; PCA, principal component analysis; SVM,

support-vector machine; RBF, radial basis function; ROC, receiver operating

characteristics.

Table 5

Prediction results of the TUG test.

Classifier model Kernel function
Number of

features
Accuracy ROC AUC

Linear 36 66.67% 0.6111

RBF 36 69.23% 0.6111

SVM

Polynomial 36 77.78% 0.5556

Linear 16 66.67% 0.8333

RBF 1 69.23% 0.6389

PCA-SVM

Polynomial 1 66.67% 0.8333

AUC, area under the ROC curve; PCA, principal component analysis; SVM,

support-vector machine; RBF, radial basis function; ROC, receiver operating

characteristics.

Table 6

Prediction results of jump height.

Classifier model Kernel function
Number of

features
Accuracy ROC AUC

Linear 36 66.67% 0.7222

RBF 36 69.23% 0.7778

SVM

Polynomial 36 70.00% 0.6190

Linear 8 66.67% 0.7222

RBF 3 69.23% 0.7778

PCA-SVM

Polynomial 2 70.00% 0.6667

AUC, area under the ROC curve; PCA, principal component analysis; SVM,

support-vector machine; RBF, radial basis function; ROC, receiver operating

characteristics.



classification model, although the accuracy and ROC AUC are un-

changed, the number of feature selections is significantly reduced.

Therefore, it can be said that the PCA-SVM classification model of

the RBF kernel function is better in comparison with the other models.

4. Discussion

Machine learning is capable of predicting several factors, such

as reduction in walking speed (with up to 81.82% accuracy and ROC

AUC 0.9167); increase in the time of the TUG test (with up to 66.67%

accuracy and ROC AUC 0.8333); and reduction in vertical jump

height (with up to 69.23% accuracy and ROC AUC 0.7778). Overall,

neuropsychological tests are predictive of gait decline, especially

walking speed, in MCI patients. Therefore, the highest correlation

among gait parameters in MCI patients could be walking speed, and

then followed by vertical jump height. Most studies have explored

the gait of PD rather than the gait of MCI and there are different

types of MCI. It needs to be considered together with other neuro-

logical diseases. Therefore, this study included patients with MCI

caused by PD, AD, etc. There were many studies comparing the

differences between pathological gait and healthy gait. The strength

of our study is to investigate the gait parameters in different types of

MCI patients. The decline of gait parameters in MCI patients can be

predicted by neuropsychological tests via machine learning.

Several limitations must be addressed. First, the small sample

size may limit the strength of the study. This is attributable to the

study involving the combination of detailed neuropsychological and

gait assessments. Second, selection bias may occur in this hospital-

based study and high loss follow-up rate. Third, several known im-

portant factors affecting gait and jump performance, such as body

mass index, medical conditions, medication information, and others,

were not included in this study. Finally, all participants are still in the

course of disease progression after the first visit, and their gait para-

meters may change in the future. A more extended period of ob-

servational study is warranted, using machine learning and gait para-

meters, to predict the decline in gait and jump performance. If more

gait parameters and more participants with MCI are included, the

amount of machine learning data can be increased, which would

improve the accuracy of the prediction model.

5. Conclusion

This study included patients with MCI caused by PD, AD, etc. To

explore the gait changes in MCI patients, we used machine learning

to predict the possible reduction in walking speed, increase in the

time of the TUG test and reduction in jump height through com-

prehensive neuropsychological tests. The neuropsychological test-

ing is predictive of gait decline in MCI patients, especially in walking

speeds.
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